
5.Passive_Buzzer

Introduction
In this lesson, we will learn how to make a passive buzzer play music.

Hardware Required
 1 * Raspberry Pi

 1 * T-Extension Board

 1 * Passive Buzzer

 1 * 40-pin Cable

 1 * S8050 PNP Transistor

 Several Jumper Wires

 1 * Breadboard

 1 * Resistor(1kΩ)

Principle

Passive Buzzer
a passive buzzer does not have such source, so it will not beep if DC

signals are used; instead, you need to use square waves whose

frequency is between 2K and 5K to drive it. The active buzzer is often

more expensive than the passive one because of multiple built-in

oscillating circuits.

Schematic Diagram
In this experiment, a passive buzzer, a PNP transistor and a 1k resistor are used

between the base of the transistor and GPIO to protect the transistor.

When GPIO17 is given different frequencies, the passive buzzer will emit different

sounds; in this way, the buzzer plays music.

T-Board Name physical wiringPi BCM

GPIO17 Pin 11 0 17

5.Passive_Buzzer

Experimental Procedures

Step 1: Build the circuit.

For C Language Users

Step 2: Change directory.

cd /home/pi/REXQualis_Raspberry_Pi_Complete_Starter_Kit/C/5.Passive_Buzzer

Step 3: Compile the code.

gcc 5.Passive_Buzzer.c -o Passive_Buzzer.out -lwiringPi

Step 4: Run the executable file above.

sudo ./Passive_Buzzer.out

5.Passive_Buzzer

The code run, the buzzer plays a piece of music.

Code

#include <wiringPi.h>

#include <softTone.h>

#include <stdio.h>

#define BuzPin 0

#define CL1 131

#define CL2 147

#define CL3 165

#define CL4 175

#define CL5 196

#define CL6 221

#define CL7 248

#define CM1 262

#define CM2 294

#define CM3 330

#define CM4 350

#define CM5 393

#define CM6 441

#define CM7 495

#define CH1 525

#define CH2 589

#define CH3 661

#define CH4 700

#define CH5 786

5.Passive_Buzzer

#define CH6 882

#define CH7 990

int song_1[] =

{CM3,CM5,CM6,CM3,CM2,CM3,CM5,CM6,CH1,CM6,CM5,CM1,CM3,CM2,CM2,

CM3,CM5,CM2,CM3,CM3,CL6,CL6,CL6,CM1,CM2,CM3,CM2,CL7,CL6,CM1,CL

5};

int beat_1[] = {1,1,3,1,1,3,1,1,1,1,1,1,1,1,3,1,1,3,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,3};

int song_2[] =

{CM1,CM1,CM1,CL5,CM3,CM3,CM3,CM1,CM1,CM3,CM5,CM5,CM4,CM3,CM2,

CM2,CM3,CM4,CM4,CM3,CM2,CM3,CM1,CM1,CM3,CM2,CL5,CL7,CM2,CM1};

int beat_2[] = {1,1,1,3,1,1,1,3,1,1,1,1,1,1,3,1,1,1,2,1,1,1,3,1,1,1,3,3,2,3};

int main(void)

{

int i, j;

if(wiringPiSetup() == -1){ //when initialize wiring failed,print message to screen

printf("setup wiringPi failed !");

return 1;

}

if(softToneCreate(BuzPin) == -1){

printf("setup softTone failed !");

return 1;

}

5.Passive_Buzzer

while(1){

printf("music is being played...\n");

for(i=0;i<sizeof(song_1)/4;i++){

softToneWrite(BuzPin, song_1[i]);

delay(beat_1[i] * 500);

}

for(i=0;i<sizeof(song_2)/4;i++){

softToneWrite(BuzPin, song_2[i]);

delay(beat_2[i] * 500);

}

}

return 0;

}

Code Explanation

#define CL1 131

#define CL2 147

#define CL3 165

#define CL4 175

#define CL5 196

#define CL6 221

#define CL7 248

···

These frequencies of each note are as shown. CL refers to low note, CM middle

note,CH high note, 1-7 correspond to the notes C, D, E, F, G, A, B.

5.Passive_Buzzer

int song_1[] =

{CM1,CM1,CM1,CL5,CM3,CM3,CM3,CM1,CM1,CM3,CM5,CM5,CM4,CM3,CM2,

CM2,CM3,CM4,CM4,CM3,CM2,CM3,CM1,CM1,CM3,CM2,CL5,CL7,CM2,CM1};

int beat_1[] = {1,1,1,3,1,1,1,3,1,1,1,1,1,1,3,1,1,1,2,1,1,1,3,1,1,1,3,3,2,3};

The array, song_1[] stores a musical score of a song in which beat_1[] refers to the

beat of each note in the song (0.5s for each beat).

if(softToneCreate(BuzPin) == -1){

printf("setup softTone failed !");

return 1;

This creates a software controlled tone pin. You can use any GPIO pin and the pin

numbering will be that of the wiringPiSetup() function you used. The return value is

0 for success. Anything else and you should check the global errnovariable to see

what went wrong.

for(i=0;i<sizeof(song_1)/4;i++){

softToneWrite(BuzPin, song_2[i]);

delay(beat_2[i] * 500);

}

Employ a for statement to play song_1.

In the judgment condition, i<sizeof(song_1)/4， “devide by 4” is used because the

array song_1[] is an array of the data type of integer, and each element takes up four

bytes.

The number of elements in song_1 (the number of musical notes) is gotten by

deviding sizeof(song_4) by 4.

To enable each note to play for beat * 500ms, the function delay(beat_1[i] * 500)

is called.

The prototype of softToneWrite(BuzPin, song_1[i])：

void softToneWrite (int pin, int freq);

5.Passive_Buzzer

This updates the tone frequency value on the given pin. The tone does not stop

playing until you set the frequency to 0.

For Python Language Users

Step 2: Change directory.

cd /home/pi/REXQualis_Raspberry_Pi_Complete_Starter_Kit/Python

Step 3: Run.

sudo python3 5.Passive_Buzzer.py

The code run, the buzzer plays a piece of music.

Code

The code here is for Python3, if you need for Python2, please open the code with the

suffix py2 in the attachment.

#!/usr/bin/env python3

#---

#

This is a program for Passive Buzzer Module

It will play simple songs.

You could try to make songs by youselves!

#

Passive buzzer Pi

VCC ----------------- 3.3V

GND ------------------ GND

SIG ---------------- Pin 11

#

#---

import RPi.GPIO as GPIO

import time

5.Passive_Buzzer

Buzzer = 11

CL = [0, 131, 147, 165, 175, 196, 211, 248] # Frequency of Low C notes

CM = [0, 262, 294, 330, 350, 393, 441, 495] # Frequency of Middle C notes

CH = [0, 525, 589, 661, 700, 786, 882, 990] # Frequency of High C notes

song_1 = [CM[3], CM[5], CM[6], CM[3], CM[2], CM[3], CM[5], CM[6], # Notes

of song1

CH[1], CM[6], CM[5], CM[1], CM[3], CM[2], CM[2], CM[3],

CM[5], CM[2], CM[3], CM[3], CL[6], CL[6], CL[6], CM[1],

CM[2], CM[3], CM[2], CL[7], CL[6], CM[1], CL[5]]

beat_1 = [1, 1, 3, 1, 1, 3, 1, 1, # Beats of song 1, 1 means 1/8 beats

1, 1, 1, 1, 1, 1, 3, 1,

1, 3, 1, 1, 1, 1, 1, 1,

1, 2, 1, 1, 1, 1, 1, 1,

1, 1, 3]

song_2 = [CM[1], CM[1], CM[1], CL[5], CM[3], CM[3], CM[3], CM[1], # Notes

of song2

CM[1], CM[3], CM[5], CM[5], CM[4], CM[3], CM[2], CM[2],

CM[3], CM[4], CM[4], CM[3], CM[2], CM[3], CM[1], CM[1],

CM[3], CM[2], CL[5], CL[7], CM[2], CM[1]]

beat_2 = [1, 1, 2, 2, 1, 1, 2, 2, # Beats of song 2, 1 means 1/8 beats

1, 1, 2, 2, 1, 1, 3, 1,

1, 2, 2, 1, 1, 2, 2, 1,

5.Passive_Buzzer

1, 2, 2, 1, 1, 3]

def setup():

GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location

GPIO.setup(Buzzer, GPIO.OUT) # Set pins' mode is output

global Buzz # Assign a global variable to replace

GPIO.PWM

Buzz = GPIO.PWM(Buzzer, 440) # 440 is initial frequency.

Buzz.start(50) # Start Buzzer pin with 50% duty ration

def loop():

while True:

print ('\n Playing song 1...')

for i in range(1, len(song_1)): # Play song 1

Buzz.ChangeFrequency(song_1[i]) # Change the frequency along the

song note

time.sleep(beat_1[i] * 0.5) # delay a note for beat * 0.5s

time.sleep(1) # Wait a second for next song.

print ('\n\n Playing song 2...')

for i in range(1, len(song_2)): # Play song 1

Buzz.ChangeFrequency(song_2[i]) # Change the frequency along the

song note

time.sleep(beat_2[i] * 0.5) # delay a note for beat * 0.5s

def destory():

Buzz.stop() # Stop the buzzer

GPIO.output(Buzzer, 1) # Set Buzzer pin to High

GPIO.cleanup() # Release resource

5.Passive_Buzzer

if __name__ == '__main__': # Program start from here

setup()

try:

loop()

except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program

destroy() will be executed.

destory()

Code Explanation

CL = [0, 131, 147, 165, 175, 196, 211, 248] # Frequency of Low C notes

CM = [0, 262, 294, 330, 350, 393, 441, 495] # Frequency of Middle C notes

CH = [0, 525, 589, 661, 700, 786, 882, 990] # Frequency of High C notes

These are the frequencies of each note. The first 0 is to skip CL[0] so that the

number 1-7 corresponds to the CDEFGAB of the tone.

song_1 = [CM[3], CM[5], CM[6], CM[3], CM[2], CM[3], CM[5], CM[6], # Notes

of song1

CH[1], CM[6], CM[5], CM[1], CM[3], CM[2], CM[2], CM[3],

CM[5], CM[2], CM[3], CM[3], CL[6], CL[6], CL[6], CM[1],

CM[2], CM[3], CM[2], CL[7], CL[6], CM[1], CL[5]]

These arrays are the notes of a song.

beat_2 = [1, 1, 2, 2, 1, 1, 2, 2, # Beats of song 2, 1 means 1/8 beats

1, 1, 2, 2, 1, 1, 3, 1,

1, 2, 2, 1, 1, 2, 2, 1,

1, 2, 2, 1, 1, 3]

Every sound beat (each number) represents the ⅛ beat, or 0.5s

Buzz = GPIO.PWM(Buzzer, 440)

Buzz.start(50)

Define pin Buzzer as PWM pin, then set its frequency to 440 and Buzz.start(50)

is used to run PWM. What’s more, set the duty cycle to 50%.

5.Passive_Buzzer

for i in range(1, len(song_1)):

Buzz.ChangeFrequency(song_1[i])

time.sleep(beat_1[i] * 0.5)
time.sleep(1)

Run a for loop, then the buzzer will play the notes in the array song_1[] with the

beats in the beat_1[] array, .

Now you can hear the passive buzzer playing music.

Phenomenon Picture

	Introduction
	Hardware Required
	Principle
	For Python Language Users

	Step 2: Change directory.
	Step 3: Run.
	Code
	destory()
	Phenomenon Picture

